
MPEG-4 video encoder and decoder implementation on RMI Alchemy
Au1200 processor for video phone applications

László Felföldi
Department of Informatics, University of Szeged

H-6720 Szeged, Árpád tér 2., Hungary
lfelfold@inf.u-szeged.hu

Key words: MPEG4, Secure Video phone, Video encoding and decoding, Optimization, MIPS32, Alchemy Au1200

Abstract: MPEG-4 Simple Profile video is widely used as video compression in video phone applications. Because of
its high complexity, the design of fully standard-compliant MPEG-4 video encoder with real time speed on
low-power mobile processors like ARM or RMI Alchemy family, embedded applications require optimiza-
tions at all level. This paper describes the details of the efficient implementation of MPEG-4 Simple Profile
video encoder and decoder on Alchemy Au1200 core, making available to run simple secure video phone
applications using QCIF resolution video at 30 frames per second

1 Introduction

With the advance of the multimedia communica-
tion technologies, video phone applications are get-
ting polular in the past years. The increasing avail-
able network bandwidth and computational resources
make the video transmission available even for mo-
bile devices in better quality than the VCR systems
could produce. MPEG-4 coding [1, 2] is widely
used in video streaming applications, and serves as
a the base of emerging, more sophistical standards as
H.264 (MPEG-4 AVC). MPEG-4 Simple Profile cod-
ing, that requires only the implementation of a simpli-
fied subset of features, is similar to the coding used in
the MPEG-1, MPEG-2, H.261 or H.263, but the im-
proved techniques make higher compression rate or
video quality available.
The Simplified version of a video phone consists of
the following parts (Fig. 1):
• Camera or Video input device that imports the

phisical image into digital data stream
• Video encoder device that compresses the video

data into its more compact representation
• In the case of secured application, an encrypter de-

vice transcripts the encoded stream into secured
stream version.

• The generated stream is forwarded to the other end-
point or endpoints using a selected network proto-
col, like RTP

• The stream received from the the network needs to
be decrypted by the decrypter module

• The video encoder uncompress its input into the
format required by the dispay unit

• The display unit or video output device makes the
received video visible.

The module that reqires the most computational re-
sources is the video encoding process. Furthermore,
the quality and performance of a video phone applica-
tion mostly depend on the decoder quality and perfor-
mance, thus its effective implementation has great im-
portance. To acomplish this task, algorithmic and ar-
chitecture dependent optimization should be applied
[3].

This paper aimes to specify an effective imple-
mentation of Simple Profile MPEG-4 video encoding
and decoding on Alchemy Au1200 processor. Sec-
tion 2 lists briefly the capabilities and features of the
Au1200 architecture. Section 3 deals with the MPEG-
4 Simple profile video decoding and its hardware im-
plementation, while Section 4 describes the video en-
coding process and the possible software optimization
techniques.

2 Alchemy Au1200 architecture

The Alchemy Au1200 processor is a high-
performance, low-power, high integration System-on-

1



Figure 1: An example for a secure video phone application

chip targeted at personal media players, automotive
information and entertainment, multimedia clients
and devices where efficient digital media processing
and low power are valued. For enhancing support
of the special needs of these application, the Au1200
processor, besides the MIPS32 CPU core, features the
following modules:

• CIM: The built-in camera interface module (CIM)
can connect to a CMOS or CCD type image sen-
sor. The CIM can be configured to convert Bayer
pattern RGB or CCIR 656 protocol data into pla-
nar format and with the cooperation of the on-chip
MAE Back End it can demosaic the data stream
into YUV format that required by the video en-
coder.

• LCD: The Au1200 integrated LCD controller has
the capabilities necessary for driving the latest in-
dustry standard 1-8 bit grayscale or 4-24 bit color
LCD panels. The controller performs the basic
memory based frame buffer to LCD panel data
transfer through use of a dedicated DMA controller
with double buffering support. Spatio-temporal
dithering (frame rate modulation) is also supported
for STN type LCD panels. The LCD controller
supports four moveable overlay window, each of
them can be configured to use double buffering, al-
pha blending, and 256-entry 32bpp palette, making
the architecture capable to run user friendly graph-
ical interfaces.

• MAE: The media acceleration engine (MAE) sup-
ports inverse quantization (IQ), inverse discrete co-
sine transform (IDCT), motion compensation, im-
age scaling, image post filtering, and color space
conversion. MAE operates as two independent
parts, the front end and the back end. The front end
includes the IQ, IDCT, and motion compensation.
The back end part is responsible for the scaler/filter
and color space conversion.

• AES: The on-chip 128-bit AES cryptography en-

gine can be applied to encrypt or decrypt the spec-
ified data packet, allowing the Au1200 platform to
build simple secure applications.

Although the Au1200 processor is designed for
multimedia client applications, the presence of the
camera interface, the features of MAE Back End
module, and the realtively high execution capacity
of the main core make the processor available for
building secure video phone systems with QCIF video
resoliton at 30 frames per second.

3 MPEG-4 Video decoding

MPEG-4 Simple Profile decoding procedure con-
sists on bit stream parsing, Variable Length Decoding
(VLD), inverse DC and AC prediction, Inverse Scan-
ning, Inverse Quantization (IQ), Inverse Discrete Co-
sine Transformation (IDCT), Motion Compensation
(MC) and Video Object Plane (VOP) reconstruction
(Fig. 2):

• The video stream is parsed into motion and texture
substreams for macroblocks.

• Motion substream describes the movement vector
of the macroblock, and the decoding process copies
the corresponding portion of the reference frame to
the actual frame

• Texture substream holds the data that describes the
macroblock completely (in the case of I-frames),
or compensates the pixel differences of the moved
macroblock (in the cases of P and B-frames)

Although the decoding process has high resource
comsumption, the on-chip Media Accelerator Engine
of the Alchemy Au1200 processor can dramatically
decrease the exection time. The main features of the
MAE Front End, designed to help the deconding task
(Fig. 3):
• Supports up to 720 x 480 - 30 fps decoding

2



Figure 2: Diagram of MPEG-4 Simple Profile Video Decoding

• Flexible inverse quantization implementation
• Inverse discrete cosine transform
• Motion compensation for I, P, and B frames
• Support for 1, 2, and 4 motion vectors
• Support for interlaced tools (field prediction)
• Full, half, and quarter pel motion compensation
• WMV9 smoothing and in-loop deblocking filters

As the comparison of the figures of the MPEG-4
SP decoding (Fig. 2) and the MAE capabilities (Fig.
3) shows, the decoding process simplifies to the pars-
ing of the video stream for motion vector and texture
coefficients, and configuring the MAE registers.

4 MPEG4 Video Encoding

MPEG-4 Video Encoding creates the video stream
from the video input stored in YUV format. Figure 4
shows the simplified diagram of the MPEG-4 Simple
Profile encoding process:
• The first step is to decide the frame type (I or P).
• In the case of P frames the motion vectors for Mac-

roBlocks should be computed. This step requires
the presence of the reference frame that needs to be
created in the same way as the decoder.

• Motion Compensation step calculates the differ-
ences between the corresponding region of the ref-
erence frame and the current frame.

• DCT step transforms these values into the fre-
quency domain, and Quantization step cuts the not
coefficients by reducing the storing precision. This
cutting step determines the compression of the en-
coding of the texture data.

• The quantized values are scanned in a special (zig-
zag) order and then coded with VLE (Variable
Length Encoding) and Huffman encoding.

• Controlling the compressing rate can be achieved
by configuring the quantization or by adjusting the
frame type decision (P-frames requires less bits
than I-frames).

4.1 Algorithmic Level Optimization

The process of algorithmic optimization involves
changing the algorithms in high-level language (usu-
ally C) to reduce the computations. Apart from imple-
menting optimal algorithms, optimization techniques
like loop unrolling, loop distribution and loop inter-
change are used.

4.1.1 Motion Estimation

Profiling the encoding, it can be observed that motion
estimation requires major portion of the processing
power. Besides the diamond searching [4] and the fast
three-step searching algorithms [5], an adaptive rood
pattern searching method [6] is implemented. The fast
and effective execution of this task is the key point of
the encoding process.

• SAD value calculation: The sum of absolute differ-
ences can be calculated using the SAD value cor-
responding the previous adjacent position: The ab-
soulte difference values that belong to the block of
previous position but not the actual position, should
be stubstraced, while the values that belong the ac-
tual position but not the previous position, should
be added to the previous SAD value to form the ac-
tual SAD value.

• Half pixel Motion Vector Estimation: This involves
the refining the integer pixel motion vector to half
pixel accuracy. Without finding the SAD value cor-
responding to all possible half-pixel motion vectors
around the integer pixel motion vector, the algo-
rithm described in [7], reduces the computational

3



Figure 3: RMI Alchemy Au1200 Media Accelerator Engine Front End Video decoding implementation. The
input of the decoding system is stored in the RAM as a list of MacroBlock descriptors containing motion vectors,
texture coefficients and some additonal configration entries. Motion compensation can use both backward and
forward reference frames, and some features for Windows Media 9 are also implemented.

complexity by minimum 25%, and the change in
PSNR is less than ± 0.03 db.

4.1.2 DCT and Quantization

• Prediction of not coded blocks: The SAD value cal-
culated for 8x8 blocks is applied to predict whether
the DCT coefficients will be all zeroes after the
quantization step. If the SAD value is less than a
threshold then those blocks are treated as not-coded
blocks. If the threshold value is high, then more
blocks are predicted as not-coded blocks and com-
putational complexity reduces but mis-prediction
increases leading to quality degradation.

• Multiplication Instead of Division using Table
lookup: On Au1200 processor the execution time
for integer division operation is about 35 cycles,
while a multiplication operation takes one cycle. In
quantization, one division operation is required for
each coefficient, this division operation could be re-
placed by multiplication with the reciprocal of the
denominator without loss of precision using lookup
table and constant data memory required is less.

• Last Position: Last position of the block is the posi-
tion of the non-zero coefficient, after which all the
AC coefficients have zero value. Last position of
every block can be computed during quantization.
Knowing last position results reduced procession
time, especially when calculating Coded Block Pat-
tern (CBP) and VLE.

4.1.3 Bitstream creation

Variable Length Encoding: The last position of the
non-zero coefficient calculated during the quantiza-
tion is available, so there is no need to check the val-
ues in each step.

4.2 Architecture Level
Optimizations

• Inverse DCT and Inverse Quantization: The
Au1200 processor built-in MAE Front End is de-
signed to accelerate the video decoding. In the en-
coding process this engine can be applied to recon-
stuct the reference frame, significantly reducing the
computational time.

• Reducing the function call overhead: Intensive
loops having function calling inside in the loop
are converted into loops containing the called code.
Additionally, functions invoked from only one lo-
cation of the code can be declared to inline, this re-
duces the function call overhead with out increas-
ing the code size and without disturbing the code
readability.

• Bitstream packing: Writing variable length bit se-
queces into a specified bit position is an essential
step of the encoding process. Reimplementing this
operation in assembly can speed up the method and
execution time can be decreased by 50%.

REFERENCES

[1] M. Verification, M. IEC, J. WG, and M. No.
Mpeg-4 video verification model, 1997.

[2] Yen-Kuang Chen And. Implementation of real-
time mpeg-4 fgs encoder.

[3] R. S. V. Prasad and K. Ramkishor. Efficient im-
plementation of mpeg-4 video encoder on risc
core.

[4] S. Zhu and K-K Ma. A new diamond search al-
gorithm for fast block-matching motion estima-
tion. IEEE Trans. Image Process., 9(2):287–290,
February 2000.

4



Figure 4: Simplified diagram of MPEG-4 Simple Profile Video Encoding

[5] B. Zeng R. Li and M.L. Liou. A new tree-step
search algorithm for block-matching motion eti-
mation. IEEE Trans. Circuits Syst. Video Tech-
nol., 3(4):438–443, August 1994.

[6] Y. Nie and K-K Ma. Adaptive rood pattern search
for fast block-matching motion etimation. IEEE
Trans. Image Process., 11(12):1442–1448, De-
cember 2002.

[7] PSSBK Gupta and Ramkishor Korada. Mpeg-
4 video encoder on adi blackfin dsp for digital
imaging applications.

5


